Project Number 621668-EPP-1-2020-1-ES-EPPKA2-KA Project Title Mixed Reality in medical Education based on Interactive Applications (MIREIA) # EXTERNAL EVALUATION – 1ST YEAR **Dissemination Level** Confidential **Delivery Date** January 2022 Responsible TUDELFT, CCMIJU Authors Alberto Arezzo ### Copyright # © Copyright 2021 The MIREIA Consortium #### Consisting of: - Fundación Centro de Cirugía de Mínima Invasión Jesús Usón (CCMIJU) - Universidad Politécnica de Madrid (UPM) - eCapture3D - SINTEF - Delft University of Technology (TUDELFT) - Fundatia MEDIS - Oslo University Hospital (OUS) - Avaca Technologies - St. Olavs hospital This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the MIREIA Consortium. In addition, an acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced. #### All rights reserved. This document may change without notice. #### Version control | Version | Date | Comment | |---------|------------|--------------------| | 01 | 13.02.2022 | Date of the report | # 1. Summary In this evaluation, the external evaluator will present its opinion on the project's planned roadmap and its alignment with market needs. The external evaluator will also provide an overall assessment of the project's progress. # Table of contents Summary 3 1. 5 1.1. 5 1.2. 6 1.3. 6 2. 7 #### 2. Introduction # 1.1. Summary of the project Medical education is a long and demanding process, requiring the learning of extensive theoretical knowledge as well as a set of technical and non-technical skills. Traditionally, during the early stages of education, formative methods are often based on static learning content and sometimes far removed from actual clinical practice. Currently, these methods are being replaced by new approaches based on the use of information and communication technologies (ICTs). New technologies, such as extended reality (which include virtual (VR), augmented (AR) and mixed reality (MR)) and three-dimensional (3D) printing, are being applied in different aspects of the medical field, including education. Despite the popularisation of these methods and technologies, several challenges remain to be addressed in order to extract the full didactic potential of virtual models: (1) there are no existing technologies for quick and automatic generation of 3D models, which means that models must be obtained from third parties with limited personalization; (2) there are no accepted standards to exploit these novel immersive technologies with methodological guidelines in medical training, and (3) scientific evidence to support the validity of personalized models as learning and training tools is scarce. MIREIA (Mixed Reality in medical Education based on Interactive Applications) project is a unique Knowledge Alliance involving Higher Education institutions (HEIs) and companies that will combine the use of cutting-edge technology in immersive virtual technology and 3D printing with personalized learning content to promote the student-centred learning process of medical students and residents. This Alliance proposes the development of an innovative methodology and tools to provide interactive pedagogical content for customized training based on 3D models, such as anatomical models (with and without pathologies) built from real-patient cases (e.g., medical imaging studies) or virtual scenarios for basic training in minimally invasive surgery (MIS). Contents will be accessible anytime and anywhere using portable devices, extended reality (XR) visualization technologies, or printed with 3D printing technology. This will allow students to train through immersive virtual environments or in physical simulators that use personalized 3D printed models. Mentors will also be able to create and share any clinical experience as learning content for students such as medical imaging studies, 3D anatomical models based on preoperative studies, or video sequences of surgical procedures, following specific methodological guidelines. In addition, innovative tools will be implemented for the semi-automatic creation of customized 3D models for educational purposes. This Alliance seeks to bridge the gap between classroom learning and laboratory training and actual clinical practice. All the guidelines and learning contents will be available through open access as part of the MIREIA repository, which will also act as a hub to share 3D models and learning contents. To test the viability of the solution, validation will be carried out for three medical use cases: medical anatomy, laparoscopy and flexible endoscopy. Project website: http://www.mireia-project.eu/ ## 1.2. Quality Actions Throughout the project, different mechanisms are being developed to ensure the quality of the work carried out. To this end, a Quality Plan is elaborated in the "WP2. Quality Actions". The main objectives of the quality plan are to document and evaluate the progress of the project, to evaluate (internally and externally) the results obtained with respect to the objectives of the project and to identify deviations or possible deficiencies in order to be able to apply corrective actions, if necessary, as soon as possible. As part of the external evaluation, an external expert from the consortium is asked to carry out an external review of the project (1) from the point of view of the scope and (2) by evaluating the usefulness of the final technical solution implemented. The external evaluator will be contacted twice to evaluate the current scope of the project (M12 and M24) to give feedback on the roadmap planned for the project and alignment of it with the needs of the market. Besides that, an additional evaluation of the content generation tools and learning contents developed throughout the project will be carried out with medical students and residents with the support of the European Association for Endoscopic Surgery (EAES). This will be incorporated into a report at the end of the project. #### 1.3. External evaluator Dr. Alberto Arezzo is a General Surgeon and Digestive Endoscopists for operative procedures, mainly dedicated to clinical activity, with an academic role and deeply involved in several research projects sponsored by the European Commission and private companies. He is also Associate Professor at the Department of Surgical Science, University of Torino, Italy, and General Secretary of the European Association for Endoscopic Surgery (EAES). #### 3. External evaluation ## Scope of the project MIREIA (Mixed Reality in medical Education based on Interactive Applications) project is an Alliance that aims to provide interactive pedagogical content for customized training. This is achieved through the development of an innovative methodology and tools based on 3D models, such as anatomical models (with and without pathologies) built from real-patient cases (e.g., medical imaging studies) or virtual scenarios for basic training in minimally invasive surgery (MIS). This is supposed to bridge the gap between classroom learning and laboratory training and actual clinical practice. All the guidelines and learning contents will be available through open access as part of the MIREIA repository. Three medical use cases are considered for validation: medical anatomy, laparoscopy and flexible endoscopy. In order to achieve this, the contents will be accessible anytime and anywhere using portable devices, extended reality (XR) visualization technologies, or printed with 3D printing technology, this should allow students to train through immersive virtual environments or in physical simulators that use personalized 3D printed models. Mentors will also be able to create and share any clinical experience as learning content for students such as medical imaging studies, 3D anatomical models based on preoperative studies, or video sequences of surgical procedures, following specific methodological guidelines. In addition, innovative tools will be implemented for the semi-automatic creation of customized 3D models for educational purposes. The final and wide objectives of the Project would be: - 1. The modernization of the European training system at medical and surgical training made available to mentors, students and residents alike a set of innovative pedagogical and training tools. - 2. The creation of a European knowledge-sharing framework for the training and education of future medical professionals, thus promoting the efficient use of resources. - 3. The additional value of the training services of HEIs and to expand their range of training solutions based on cutting-edge technology, as well as to reach a larger number of students. This is a very ambitious, very demanded but also reasonably feasible project. Especially in times of pandemic, with restricted access to physical labs and clinical wards for training, digitalization should offer an alternative to physical education in person, even in a critical field such as medicine in general. This is perfectly in line with the novel concept of Healthcare 4.0. The introduction of physical simulators that use personalized 3D printed models based on real clinical cases imaging makes this approach unprecedented at this level. The project is illustrated with sufficient clarity and pertinence of the objectives, soundness of the concept, and credibility of the proposed methodology. The proposed work is beyond the state of the art and demonstrates innovation potential. There is an appropriate consideration of interdisciplinary approaches and, where relevant, the use of stakeholder knowledge and gender dimension in research and innovation content. The KPIs are clearly defined. My only concerns here regard 1. It is not sufficiently expressed knowledge in printing soft and elastic tissues with different stretching and inflatable characteristics. This may represent a challenge of paramount - importance, extremely difficult and time consuming to overcome. Possible involvement of experts in the field by subcontracting such as 3d4Med (www.3d4med.eu). - 2. It is not sufficiently detailed how the semi-automatic method for the creation of customized 3D models for educational purposes will work. Clearly, this is based on the generation of specific dedicated software, but how will the input of the "expert" will interact is not specified. It is anyway very good the fact that a "human-in-the-loop" will be kept. #### Roadmap planned for the project The work plan shows good quality and effectiveness, including the extent to which the resources assigned to work packages are in line with their objectives and deliverables. Partners of the consortium show complementarity. The consortium as a whole brings together the necessary expertise, provided that good expertise in soft 3D printing is available. It is possible to read the appropriateness of the management structures and procedures, including risk and innovation management, including in the deployment of resources. There is the appropriateness of the allocation of tasks, ensuring that all participants have a valid role and adequate resources in the project to fulfil that role. #### Alignment of the project with the needs of the market The project is very much aligned with the needs of the market. The outputs of the project would contribute to each of the expected impacts mentioned in the work programme under the relevant topic. All substantial impacts that would enhance innovation capacity, create new market opportunities, strengthen competitiveness and growth of companies, address issues related to climate change or the environment, or bring other important benefits for society seem mentioned in the work programme. The involvement of an important European Scientific Association may represent a further strength Is the progress reported in line with objectives and work plan as specified in the project description? If there are significant deviations, please comment. The approach and methodology are clearly described and justified in application. The goals are ambitious, and impact of the solution is clearly justified. The advancements in the project are in line with the work plan as specified in the project description. D 1.1, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 5.1, 8.1 are available and complete. The timeline is respected. Are there any additional risks and mitigation actions that you identify other than those indicated in the "D2.2. Risk Management Plan"? My only concerns here regard 1. It is not sufficiently expressed knowledge in printing soft and elastic tissues with different stretching and inflatable characteristics. This may represent a challenge of paramount importance, extremely difficult and time consuming to overcome. Possible involvement of experts in the field by subcontracting such as 3d4Med (www.3d4med.eu). 2. It is not sufficiently detailed how the semi-automatic method for the creation of customized 3D models for educational purposes will work. Clearly, this is based on the generation of specific dedicated software, but how will the input of the "expert" will interact is not specified. It is anyway very good the fact that a "human-in-the-loop" will be kept. # Recommendations concerning future work, of applicable I would appreciate receiving in time the Annual report including slides and videos presented at a Review meeting when it will be held. # Concerns regards - 1. deeper study of 3D printing materials for higher reliability of the printed model - 2. real automation of the acquisition process from images and videos to build training models - 3. respecting ethical issues regarding the circulation of recorded material not sufficiently anonimised # Expert opinion on deliverables | Deliverable
number | Deliverable name | Comments | |-----------------------|-------------------|--| | D1.1. | Management Manual | The Deliverable is complete with the exception of ethical concerns. There are quite strict rules today in EU regarding the acquisition and circulation of medical imaging material even when anonymized. Here there is no mention neither of an <i>Ethics Control Board (ECB)</i> , nor of a control of adhering to the Guidelines on Data Management and The General Data Protection Regulation (GDPR) directive, as long as you will be doing recording, storage, protection, and management of data throughout the project. The <i>ECB</i> is responsible for: | | | | 1) Regulating the objectives and methods of research to ensure the whole procedure meets ethical standards. | | | | 2) Considering possible ethical issues in advance and offering advice to deal with possible ethical problems. | | | | 3) Making sure that researchers, committees and the public are not exposed to activities deemed morally unacceptable because of project work. | | | | 4) Examining the compatibility of the ethical standards and EU/national laws. | | D2.1. | Quality Plan | ok | |-------|--|--| | D2.1. | Progress report (Template) | ok | | D2.2. | Risk Management Plan | See above comments. Missing mitigation of risks for difficulties in realistic 3D printing of stretchable materials. Missing mitigation of risks for difficulties in semi-automatic acquisition of images/videos. | | D2.3. | Satisfaction questionnaires of
the project partners
(Template) | ok | | D8.1. | Project presentation | Very concise, not sufficiently detailed | | D8.2 | Project image and templates | missing | | D8.3. | Project website (www.mireia-project.eu) | Very well done | | D8.4. | Dissemination plan | Ok, not clear if you will build up workshop in
the program of some of these events, or if you
will rent booths to disseminate your
achievements. | | D3.1. | Pedagogical needs | ok | | D3.2. | Methodological guidelines to create learning content from 3D models | Very well done, very complete | | D3.3. | Methodological guidelines for 3D printing with training purposes | This is very well done, but shows possible risks. How do you assess the reliability of the products? | | D5.1. | Repository for learning content | ok | Torino, February 14th 2022 Dr. Alberto Arezzo Page 10 of 10